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Dynamic Segment Trees for
Ranges and Prefixes

Yeim-Kuan Chang and Yung-Chieh Lin

Abstract—In this paper, we develop a segment tree data structure for solving dynamic table lookup problems. The proposed dynamic
segment tree (DST) uses all of the distinct end points of ranges as the keys based on a new range end point scheme. The new end
point scheme generates fewer end points than the traditional end point scheme. DST is implemented as a balanced binary search tree
augmented with a range set in each node. The performance of accessing and updating the ranges stored in each node is improved by
an efficient range set data structure that combines the priority queue and the interval tree. Based on the proposed data structures, the
time complexities of search, insertion, and deletion in a set of N arbitrary ranges are O(log N), O(log N x log Max), and

O(Maz x log N x log Mazx), respectively, where Maz is the maximum number of ranges covering any address. In practical routing
tables, Mazx is a small constant (six for the routing tables we tested). The memory requirement for DST is O(Nlog N). The
experimental results using real Internet Protocol version 4 (IPv4) routing tables show that both the DST and prefix binary tree on binary
tree (PBOB) by Lu et al. (2004) perform much better than the multiway range tree (MRT) by Warkhede et al. (2004) and prefix in B-tree
(PIBT) by Lu et al. (2005) in terms of update speed and memory consumption, but DST performs much better than PBOB and a little

769

slower than MRT and PIBT in terms of search speed.

Index Terms—Segment tree, elementary intervals, B-trees, dynamic routing tables.

1 INTRODUCTION

HE World Wide Web (WWW) and many emerging

Internet applications, such as video conferencing,
remote distance learning, and digital libraries, have created
heavy traffic on the Internet. Thus, to continue providing
good quality of service on the Internet, four key issues must
be addressed in designing next-generation Internet routers
[3]. These are

higher link speeds,

better router data throughput,

a faster packet forwarding rate, and
4. quick adaptation to route changes [9].

w =

The solutions to the first two issues are now readily
available from fiberoptic cables and new Internet Protocol
(IP)-switching technology [20]. This paper deals with the
third and fourth issues.

Since the number of end users and the routing informa-
tion on the Internet has grown enormously, prefix matching
was introduced in the early 1990s to reduce the size of a
routing table. Further reduction in the size of router tables
can be achieved by means of the Classless Interdomain
Routing (CIDR) [7] scheme, which was introduced in 1993
and which aggregates network addresses in arbitrary
powers of two. With CIDR, a network has a prefix length
of about 0 to 32 bits. When an IP packet is received, the
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IP router computes the longest matching prefix in its
routing table among multiple prefixes that match the
destination address of the packet. The packet is then
forwarded from the input interface to the output interface
associated with the longest matching prefix.

To forward packets at high speeds and at fast IP lookup,
algorithms are implemented in routers. These IP lookup
algorithms can be broadly classified into two categories: static
and dynamic. The static lookup schemes usually need
precomputation to improve the lookup speed and reduce
the memory requirement. The drawback of static schemes is
that, when a single prefix is added or deleted, the entire table
lookup data structure may need to be rebuilt. Routing table
rebuilding has a negative impact on lookup performance and
is thus not suitable for dynamic routing tables. The dynamic
schemes can add or delete prefixes in real time.

In this paper, we propose the dynamic segment tree
(DST) that is suitable for dynamic routing tables. We solve
the IP lookup problem by treating the prefixes as ranges. In
other words, our data structure not only solves the prefix
match problem but also the general range match problem.
DST is a segment tree in which the keys are the distinct end
points of the ranges using the proposed range end point
scheme. The segment tree in DST is constructed based on
the concept of elementary intervals [1], [4], which will be
defined later in this paper. All of the elementary intervals
are disjoint and cover the entire address space. Each leaf
node in DST corresponds to an elementary interval. Thus,
searching DST for the ranges that match a given address d
can be performed by finding the leaf node that corresponds
to the elementary interval containing address d. Although
many existing dynamic schemes also use segment trees or
other balanced search trees, such as priority search trees
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(PSTs) and interval trees, the proposed DST has the
following advantages:

1. Both the segment tree and interval tree are simpler
than a PST and, thus, they are easy to implement.
For the segment tree, the matching ranges of a given
address d are in the nodes on the searching path
from the root to the leaf node. No nonmatching
range is involved in the search. However, for the
interval tree, the matching or nonmatching ranges of
address d may be in the nodes on the searching path.
The search in the interval tree needs to sort out the
matching ranges of d from all of the ranges
encountered on the searching path of the interval
tree. Thus, the search in the interval tree is slower
than that in the segment tree.

2. The keys in existing segment-tree-based data struc-
tures like the multiway range tree (MRT) [26] and
prefix in B-tree (PIBT) [15] are according to the
traditional end point definition in which, for a range
le, f], keys e and f are used. However, in the
proposed DST, e —1 and f are used as the keys.
As shown in our experiments for real routing tables,
the new end point scheme generates fewer keys than
the traditional end point scheme. Therefore, the
height of DST is smaller than that if the traditional
end points are used.

3. Existing segment-tree-based data structures MRT
and PIBT need an extra equal list or heap associated
with each key to record which range starts or
finishes at the key. Equal lists or heaps are used to
determine if a key has to be removed from a node
after a range is deleted. Each node in DST is
augmented with a range set called the canonical set,
which is a direct correspondence to the span list in
MRT or the interval heap in the range in B-tree
(RIBT). Based on the concept of elementary intervals,
the proposed DST node deletion rule can determine
if a key needs to be removed without any extra
information like equal lists or heaps. Thus, the node
structure in DST is smaller. DST is also improved by
the proposed range set data structure that combines
the priority queue and the interval tree [4].

Of course, the segment-tree-based schemes are not
without a disadvantage. DST stores two keys for one range
and each range is stored in O(log N) nodes in a tree of
N ranges, whereas the interval tree uses only one key for
each range and each range is stored in only one node.

The proposed DST search, insertion, and deletion
operations for N arbitrary ranges take O(logN),
O(log N x log Maz), and O(Mazx x log N x log Max) time,
respectively, where Max is the maximum number of ranges
covering any address. We conduct performance experi-
ments with real routing tables to compare DST with existing
dynamic schemes such as the prefix binary tree on binary
tree (PBOB) [14], PIBT [15], and MRT [26]. In terms of search
speed, DST performs much better than PBOB, but it is a
little worse than MRT and PIBT. In terms of update speed,
DST and PBOB perform equally well. In addition, DST
needs more memory than PBOB.
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The rest of the paper is organized as follows: Section 2
reviews the existing dynamic schemes. In Section 3, we
present a list of the terminologies used in this paper.
Section 4 gives a detailed design of the proposed data
structure and, finally, Section 5 presents the performance
comparisons of existing dynamic schemes followed by the
concluding remarks.

2 DiISCUSSION ON EXISTING SCHEMES

Various algorithms for high-performance table lookups
have been proposed in the literature. In [21], a large variety
of routing lookup algorithms is surveyed and their
complexities of the worst-case lookup, update, and memory
references are compared. Despite the intensive research
conducted in recent years regarding the IP lookup problem,
further studies on the balance between lookup speed,
memory requirement, update, and scalability for an
efficient table lookup scheme are needed. The schemes
proposed in the literature [5], [8], [11], [18], [23] are mostly
static and thus cannot afford frequent insertions and
deletions. Some schemes based on the trie data structure
[21], like binary trie, multibit trie [24], Patricia trie [23], heap
on trie (HOT) [27], and binary search tree on trie (BOT) [27],
do not use precomputation and are thus suitable for
dynamic routing tables. However, their lookup speeds
degrade linearly with the address length when switching to
Internet Protocol version 6 (IPv6). In this section, we review
the existing dynamic schemes that not only allow dynamic
insertions and deletions but also scale well to IPv6. We
classify these dynamic schemes based on their basic data
structures as follows. We assume that the number of ranges
or prefixes considered is NV, and the order of the B-tree is m.

Priority Search Tree (PST). PST [16] represents a
dynamic set G of ordered tuples [x, y], where x >0, y > 0,
and no two tuples have the same x value. PST is a
combination of a priority queue and a search tree that
operates on x and y values, respectively. With PST, we
can efficiently find tuples lying in a 2D range
(—oo : aright] x [yleft,yright]. In [13], Lu and Sahni pro-
posed a dynamic lookup scheme based on an enhanced PST
that maps a range R = [s, f] into a PST tuple [f,s]. All
ranges that match an address d can be obtained by finding
all PST tuples lying in a 2D range [d,o0] x [d,0]. To
eliminate the possibility that two tuples have the same
x value, they proposed two tuple transformations,

transform1([z,y]) = 2"z + 2" — 1 -y, 4]
and

transform1(G) = {transform1([z,y])|[x,y] € G}.

Based on the proposed data structure, inserting/deleting a
range into/from a set of conflict-free ranges and searching
for the most specific range can be completed in O(log N)
time each in the worst case.

Interval Tree. This is a binary search tree that can also be
used to store a dynamic set of tuples [x, y]. Each node in an
interval tree is associated with a key that must be covered
by at least one range. Depending on whether a node can
store more than one range, two different interval trees were
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proposed in the literature [1], [4]. In [1], each node is
allowed to store more than one range. Thus, we call it a fat
interval tree. The number of nodes in the interval tree is
O(N). To insert a range R = [e, f], if R covers the key of the
root, R is stored in the root. Otherwise, R is inserted in the
left (right) subtree of the root when f is smaller (e is larger)
than the key of the root. When R does not cover the key of
any node that is traversed, a new node with the key selected
from addresses e to f is created and inserted as the left or
right child of the node that was last visited. Using the
interval tree organization for a prefix routing table, the
longest matching prefix, as well as the highest priority
matching prefix, can be found in O(log N + k) time, where
k is the number of prefixes that match the given address.
Prefix insertion and deletion are very expensive because
ranges in some nodes may need relocations after tree
rotations. In [4], each node of the interval tree stores exactly
one range. This is called the thin interval tree. Since ranges
may overlap, two comparison rules are used to compare if a
range is smaller or larger than another range. For two
ranges R1 = [el, f1] and R2 = [e2, f2], the first rule defines
R1 < R2 if el < e2. If there is a tie in the first rule, then the
second rule applies. The second rule defines R1 < R2 if R2
is a subrange of R1 (that is, el = €2 and f1 > f2). Based on
the comparison rules, ranges can be stored in a balanced
binary search tree such as red-black trees. In addition, each
node stores a max value, which is the maximum of the
finish end points of all ranges stored in the subtree rooted at
that node. In contrast to the fat interval tree [1], prefix
insertion and deletion take O(logN) time. However,
O(min{N,klogN}) time is needed to find the longest
matching prefix, as well as the highest priority matching
prefix, where k is the number of matched prefixes for a
given address.

In [14], Lu and Sahni developed an enhanced fat interval
tree [1] for dynamic routing tables. Two changes are
reinforced on the interval tree. First, the rule that a key in
the interval tree must be covered by at least one range is
relaxed. Second, this relaxation is again restricted by a size
constraint that limits the total number of nodes in the
interval tree to be not more than 2N. Lu and Sahni also
discussed the data structures that are suitable for organiz-
ing the ranges stored in each node of the interval tree based
on nonintersecting ranges (binary tree on binary tree
(BOB)), arbitrary ranges (Compact BOB (CBOB)), or prefixes
(PBOB and longest matching prefix BOB (LMPBOB)). With
real routing tables, BOB and PBOB complete a search,
insertion, and deletion in O(log N) time.

Segment Tree. This is another search tree in which the
keys are the distinct end points of all ranges. Each leaf node
is associated with an interval, called the elementary interval,
which is defined as a range of addresses. The interval of an
internal node is the union of the intervals of its children.
The range R is stored in a node x if it covers the interval
associated with node = and not the interval associated with
z’s parent. Thus, each range may be stored in O(N log N)
nodes in a binary segment tree or in O(N log,, N) nodes in a
multiway segment tree of order m. However, the definitions
of intervals for different segment-tree-based schemes are
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fundamentally different, which, in turn, make their perfor-
mance varied.

Feldmann and Muthukrishnan [6] used a static data
structure called fat inverted multiway segment (FIS) tree to
solve the packet classification problem. To allow dynamic
insertions and deletions of ranges, they proposed a dynamic
FIS tree of order m in which the internal nodes to which the
leaves are connected may have a degree of between m/c;
and ¢y x m for suitable constants ¢y, cys > 1. Other internal
nodes have a degree of m. Thus, the search time of
O(log,, N) can be achieved. Sahni and Kim [22] developed
a data structure for dynamic routing tables that is called a
collection of red-black trees (CRBT). The basic interval tree
of CRBT is constructed from the distinct end points of all
prefixes, which is similar to the segment tree. CRBT
supports a search, an insertion, or a deletion in O(log N)
time. In addition to CRBT, two multiway segment trees
were proposed in [15] and [26]. Moreover, a B-tree data
structure called MRT was proposed in [26] to find the
longest matching prefix in O(log,, N) time and to insert or
delete a prefix in O(mlog,, N) time. MRT is suitable for both
prefixes and ranges. However, many end points are
duplicated in the internal nodes and a prefix may be stored
in at most m — 1 nodes per B-tree level. This drawback
increases the update time and memory requirement. The
B-tree data structures called PIBT and RIBT in [15] were
proposed for solving this drawback and, hence, use
memory more efficiently. An important advantage of RIBT
over MRT is that each prefix is stored in O(1) B-tree nodes
per B-tree level in RIBT. The asymptotic complexity to find
the longest matching prefix is the same and the measured
time for this operation is also nearly the same for PIBT and
MRT. However, PIBT is more memory efficient by a
constant factor than MRT.

Discussion. We first summarize the complexities of all of
the dynamic schemes in Table 1 in which DST, and DST,
are the proposed DST for arbitrary ranges and prefixes,
respectively. We can see two obvious differences among all
of these schemes. First, all interval-tree-based schemes and
CRBT require the least memory, which is O(N). Second,
multiway segment-tree-based schemes take the least search
time, which is O(log,, N). However, other performance
subtleties among all schemes cannot be obtained without
extensive performance experiments.

The experimental results in [13] showed that PST
performs a little worse than CRBT in terms of search time.
However, PST performs much better than CRBT in terms of
insertion, deletion, and memory usage. The later experi-
mental results in [12] showed that all search, insertion, and
deletion operations for PST are even worse than those of the
binary trie when large routing tables are used. One reason
why PST does not scale well is because it takes time to
transform a route prefix to satisfy the constraints of PSTs.
This transformation complicates the lookup process and
increases the memory requirement. Also, the memory
requirement for PST may be too high for IPv6. Although
the theoretical complexities of PBOB and LMPBOB are not
better than other schemes, the experimental results in [14]
using real routing tables showed that PBOB and LMPBOB
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TABLE 1
Complexities of All Dynamic Schemes

Name Search Insert Delete Memory Range Type
BTrie /4 /4 /4 NW prefix
HOT /4 W logN W logN NW arbitrary
BOT W logN /4 w NW arbitrary

FIS log.N NlogN(log,.N)* | NlogN(log,N)* | NxN ™" arbitrary
BOB | logNxlog Max logN logN nonintersecting
CBOB logN+Max logN+Max logN+Max N arbitrary
PBOB w w w prefix

LMPBOB /4 logN-+logh logN+logW prefix

CRBT logN logN logN N prefix
MRT lo&mN mlo&,N mlo&,, N N prefix
PIBT log.N mlog, N mlog, N mNlog,,N prefix
RIBT log,.N mlog, N mlog, N Nlog,,N | nonintersecting
DST, logN logNxlogMax Maici%{)vg ?Wax NogN arbitrary
DST, logN Y \ prefix

Assume that the maximum number of ranges which match any address is Max. For FIS, MRT, and PIBT, m is the order of the B-tree.

perform much better than PST in terms of search, insertion,
and deletion times and memory usage.

3 PRELIMINARIES

The W-bit address space covers the addresses 0 to 2" — 1. A
W-bit prefix is denoted by p/len in the length format, where
p is a W-bit number and len is the prefix length. Usually, for
a prefix P = p/len, p%2V~"" is zero, and P covers addresses
p to p+ 2V~ — 1, where % is the modulus operator. An
example set of 6-bit prefixes is shown in Table 2 and will be
used throughout this paper. A W-bit range R = [e, f] is a
series of consecutive W-bit addresses from e to f, where
0<e<f<2" —1. Rl =[el, f1] is said to be more specific
than R2 = [e2, f2] if e2 < el and f1 < f2. By checking if a
range is more specific than another, the conflicting range set
is defined as follows:

Definition 1. The range set R has a conflict if and only if there
exists an address d for which, among all the ranges that cover
d, no one range is more specific than the others.

If a range set does not have a conflict, we call it a conflict-
free range set. A set of prefixes is a conflict-free range set.
For a set of N W-bit ranges, the address space of 0 to 2"V — 1
can be seen as being partitioned into a number of address
intervals. These intervals are called elementary intervals if
they satisfy the following definition:

TABLE 2
An Example Prefix Set Consisting of Nine 6-Bit Prefixes

Minus-1 scheme | Traditional scheme
1D Prefiz Range start | finish start finish
P1 000000/2 [0, 15] - 15 0 15
P2 010000/2 | [16,31] 15 31 16 31
P3 000100/4 [4,7] 3 7 4 7
P4 100000/1 32,63 31 - 32 63
P5 010110/5 22,23 21 23 22 23
P6 110000/2 48, 63 47 - 48 63
P7 110000/4 48, 51 47 51 48 51
P8 110111/6 55,55 54 55 55 55
P9 100000/3 32,39 31 39 32 39

Definition 2. Let the set of k elementary intervals
constructed from a set R of W-bit ranges be
X ={X;|X; = e, fi],fori =1to k}. X must satisfy the
following:

[u—

er =0and f, =2" — 1,

2. f¢:e¢+1—1f01’i:1t0k—1,

3. all addresses in X; are covered by the same subset of R
(called the range matching set of X;), denoted by EI,,
and

4. EIZ #EL‘,JA,fOTi: 1tok—1.

From Definition 2, every two elementary intervals must be
disjoint and the whole address space is the union of all
elementary intervals. Fig. 1a shows the elementary intervals
X to X, that are portioned by the distinct end points of nine
prefixes in Table 2. The range matching sets of two
consecutive elementary intervals must be different; other-
wise, the end point delimiting these two elementary intervals
should not exist. For example, EI; = {P1} # EI, = {P1,P3}.

How should the end points of ranges be defined in order
to precisely represent the elementary intervals? The tradi-
tional definition uses e and f of a range [e, f] as end points.
Partitioning the entire address space into disjoint segments
by these end points must consider two types of addresses
separately: the addresses that are equal to any end point
and those that are not. The matching ranges for an address
that is equal to one of the end points or that is between two
end points must be stored separately. For example, the
binary range search (BRS) proposed in [11] uses “>" and
“=" ports to deal with the addresses that are equal to or not
equal to any end point. Fig. 1b shows the list of end points
and their associated “> ” and “= " ports based on BRS. As a
result, the data structure of BRS is not compact because the
information of some “>" and “=" ports are redundant.
Obviously, the definition of elementary intervals is not
satisfied by the traditional end point scheme.

Subsequently, we propose a new end point scheme, called
the minus-1-end point scheme, and show that the definition of
elementary intervals can be precisely satisfied. No additional
information like “= " ports in BRSis needed and the end point
list is more compact than the traditional one.

”
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El, EL El, ElLL Els Els El, Elg El, El o El,; El,,
@) {P1} {P1,P3} {P1} {P2} {P2,P5} {P2} {P4,P9} {P4} {P4,P6,P7} {P4,.PG} {P4,P6,P8} {P4,P6}
1 X, 3 Xs 7 8 9 10 X X2
[0,3] [4,7] [8,15] [16,21] [22,23] [24,31] [32,39] [40,47] [48,51] [52,54] [55,55] [56,63]
Endpoint 0 4 7 15 16 22 23 31 32 39 48 51 55 63
(b) =Port P1 P3 P3 P1 P2 P5 P5 P2 P9 P9 P7 P7 P8 P6
>Port Pl P3 P1 P2 P2 P5 P2 P9 P9 P4 P7 P8 P6
(©) Endpoint(e;) 3 7 15 21 23 31 39 47 51 54 55
Portor ID (ID;) P1 P3 P1 P2 P5 P2 P9 P4 P7 P6 P8 P6
Fig. 1. Elementary intervals and end point schemes for ranges. (a) Elementary intervals. (b) Binary range search [11] that uses “> ” and “= " ports.

(c) Minus-1-end point scheme.

Definition 3 (minus-1-end point scheme). The two end
points of a range [e,f] are e — 1 and f.

Since the entire W-bit address space is [0,2" — 1], end
points —1 and 2" — 1 are not physically stored in the list of
end points. Let e; for i = 1 to k be the distinct end points of a
range set based on the minus-1-end point scheme. We can
show that intervals X; = [0, e1], X; = [e;—1 + 1,¢;] for i = 2 to
k, and Xyi1 = [ep + 1,2 — 1] are the elementary intervals
defined in Definition 2. It is sufficient to show that the range
matching set EI; of X; = [e;_1 + 1, ¢;] is not the same as EI;_
of X1 = [ei_Q + 17€i—1] or EL of Xiy1 = [ei + 17€i+1] as
follows: We know that an end point is either the finish end
point of a range or the start end point of a range minus one.
Thus, for the interval X; = [e;—1 + 1, ¢;], we need to consider
four possible cases, as shown in Table 3. In this study, we
only describe the first case because the other three are
similar. In the first case, e;_; is the start end point of range
R1 = [s1, f1] minus one (that is, ¢,_; = s1 — 1) and e; is the
start end point of range R2 = [s2, f2] minus one (that is,
e; = s2—1). R1 € EL,_; and R1 € EI because X; = [s1,s2 —
1] and X;_1 = [e;_2 + 1, s1 — 1]. Similarly, R2 ¢ EL, and R2 €
ElLi1 because X; =[sl,52—1] and X1 = [s2,€i41]. As a
result, EI; is not the same as EI;_; or EI;;;.

Notice that e; (the smallest end point) may be zero, but ¢,
(the largest end point) cannot be 2"V — 1. For example, the
list of 11 end points constructed from the prefixes in Table 2
based on the minus-1-end point scheme is shown in Fig. 1c.
The list of port IDs (ID; to ID;;) representing the routing
information is also shown. A binary search can be used to
find the matching elementary interval for a given address. If
we precompute the range matching set for each elementary
interval, a binary search scheme similar to the BRS that
returns the highest priority matching range can be devel-
oped. It is worth saying that, for contiguous ranges (the
finish end point of a range is equal to the start end point of
another range minus one), the minus-1-end point scheme

TABLE 3
Elementary Interval of X; with R1 = [s1,f1] and R2 = [s2, {2]

Relations Interval Xi X; Xit1
1 €i-1 = sl — 1, €= s2—1 Rlé EIj,l Rle EI{ RZeE EIi R2e EIi+1
2 leii=sl—-1,ei=12 Rl¢ Eli; | Rle El; | R2e EI; | R2¢ Eliyy
3 e =11, ei=s2—-1|RleEl; | Rlg EL; R2¢ EI; | R2e ELiyy
4 lejg = fl, ei=12 Rle El, Rlg EIL; R2e EI; | R2¢ Ely

generates fewer distinct end points than the traditional end
point scheme. For example, given two 4-bit ranges [0, 3] and
[4, 7], the minus-1-end point scheme only needs two end
points (3 and 7), whereas the traditional scheme needs four
end points (0, 3, 4, and 7). We will show that this advantage
of the minus-1-end point scheme is true for the prefixes in
the routing tables in the performance evaluation section.

4 PROPOSED DYNAMIC SEGMENT TREE

Although the binary search on the linear list of end points
based on the elementary intervals described in the previous
section solves the range table lookup problem, inserting or
deleting an end point requires shifting the entire list in the
worst case. Thus, it is not suitable for frequent range
updates. Alternatively, a segment tree [1] is a data structure
designed for storing ranges based on the elementary
intervals. The skeleton of the segment tree is a balanced
binary search tree in which the keys are the distinct end
points of a set R of N original ranges. The elementary
intervals constructed from the end points of the ranges in R
correspond to the leaf nodes of the segment tree. The
interval covered by an internal node v is the union of
elementary intervals corresponding to the leaf nodes in the
subtree rooted at v. Each node v is associated with a subset
of R (called the canonical subset of R or simply the canonical
set) based on the range allocation rule, which will be defined
later. The segment tree can efficiently determine the
elementary interval that contains a given address. The set
of matching ranges for the given address d can be obtained
by traversing the segment tree from the root to the leaf node
that corresponds to the elementary interval containing d.

Traditionally, the segment tree is constructed by pre-
computing the elementary intervals first and then using a
bottom-up approach to finish the remaining parts of the tree
structure [1]. This approach makes the segment tree have a
static data structure. Hence, the segment tree does not
support fast updates for dynamic routing tables. In this
paper, we propose a data structure, called the DST, based
on the segment tree. DST can dynamically insert/delete
prefixes or ranges into/from the segment tree. The
proposed DST completely avoids rebuilding the entire data
structure while performing updates.

The AVL tree and the red-black tree [4] are the two most
popular balanced binary search trees that have the same
complexity for all tree operations. Red-black trees are
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X3

: X X, 3
[0,31 [4,7] [8,15]

leaf node—'
[16,21]122,23]

[32,39][40,47] [48,51][52,54] [55,55][56,63]

Fig. 2. A possible DST built according to the prefixes in Table 2.

generally believed to be faster than AVL trees by a constant
factor. For example, the AVL tree of N nodes may require
O(log N) rotations to delete a node, whereas the red-black
tree only needs three rotations at most. Therefore, we
implement and describe the proposed DST with the red-
black tree.

Similarly to that in the red-black tree, each node in DST
contains the following fields: color (red or black), key (end
points of ranges), and left and right (pointers to the left and
right children). The field fld of node z is denoted by x. fid.
We use successor(xz) and predecessor(x) to denote the
successor and predecessor of node x in the sorted order,
respectively. If successor(z) does not exist, its key is set to
2" — 1. Similarly, if predecessor(z) does not exist, its key is
set to —1. For the two nodes x and y, we simply write z < y
to indicate that x.key < y.key. Since we do not physically
store the parent pointer in each node, we denote the parent
of node z by parent(z) instead of x.parent. Each node z in
DST is associated with an interval denoted by intvl(x). The
interval and the canonical set of node =, denoted by intvl(x)
and z.Cset, are similarly defined as the traditional segment
tree as described above.

Definition 4 (DST range allocation rule). Range R is stored
in the canonical set of node v (v.Cset) if and only if the
interval of v (intvl(v)) is contained in R, but the interval of
parent(v) (intvl(parent(v))) is not contained in R.

The keys in DST are the end points of ranges derived
from the minus-l-end point scheme. Fig. 2 shows a
possible DST built from the prefixes in Table 2. For node
y, successor(y) and predecessor(y) are v and u, respec-
tively, and intvl(y) is [0, 23]. Also, the two elementary
intervals delimited by y are [u.key+ 1,y.key] = [4,7] and
[y.key + 1,v.key] = [8, 15]. For example, in Fig. 2, P5 is stored
in the right leaf node of h because interval [22, 23] is
contained in P5, but the interval [16, 23] associated with
node v is not. Based on Definition 4, the following Cset
properties of DST can be obtained. This property guaran-
tees that any range is stored in at most two nodes per tree
level in DST.

Cset Property of DST. For each node v in DST, we have
1) v.Cset Nw.left.Cset = ¢, 2) v.Cset Nv.right.Cset = ¢,
and 3) v.left.Cset Nv.right.Cset = ¢.
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Algorithm DST_Search(root, d)

{

01 z=root;k=1;

02 while (z # null){

03 if (z.Cset # ¢) Cset[k++] = z.Cset;

04 if (z is a leaf node) break;

05 if (d < z.key) z = z.left;

06 else z = z.right;

07

08 if (the range set is conflict-free)

09 return the highest priority (most specific) range in Cset[k];
10 else

11 return the highest priority range among Cset[1], ..., Cset[k];
}

Fig. 3. The DST search algorithm.

Since ranges may be added in or removed from the
canonical set of a node, when we write “add a range R in
node z,” we mean adding R in x.Cset. The Cset field of leaf
nodes is used in the same way as the regular nodes. Other
fields in the leaf nodes are not used. Leaf nodes are not
considered as regular nodes. Thus, when we perform
rotations to balance DST (this will be described later), leaf
nodes are not rotated.

4.1 Search in DST

The most specific range or the highest priority range that
matches a query address can be found by traversing the tree
from the root toward a leaf. Fig. 3 shows the DST search
algorithm. The while loop in lines 2-7 implements the tree
traversal according to the query key d. While traversing
DST, all nonempty canonical sets of the traversed nodes are
recorded in array Cset[1..k], where k is the number of
nonempty canonical sets traversed. If the ranges in DST are
conflict-free, the final matched range is the most specific
range in Cset[k], which is the last nonempty canonical set
traversed. However, if the ranges in DST are arbitrary, the
final matched range is the highest priority range among all
ranges in Cset[1] to Cset[k].

Consider the example DST in Fig. 2. If destination
address d is 51, the query path of address d is w-z-g-s. Since
P7 is the most specific range among all ranges (P4, P6, and
P7) that match d, P7 is the final matched result.

Complexity. The DST search algorithm visits one node
per level. Therefore, O(log N) nodes are traversed. Assume
that the maximum size of a canonical set is O(CSize) and
that accessing the highest priority range in a canonical set
takes O(g(CSize)) time. Thus, if the range set is conflict-free,
the time complexity of a DST search is O(log N + g(CSize)).
Otherwise, if the range set is arbitrary, the time complexity
of a DST search is O(log N + log N x g(CSize)).

4.2 Insertion in DST
Inserting a range R = [e, f] in DST requires the following
steps:

1. If e is not zero, insert e — 1 as a new key in DST.

2. If fisnot 2V — 1, insert f as a new key in DST.

3. Insert R in DST according to the DST range allocation
rule.
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Algorithm DST _Insert_Endpoint(root, ep)

y = null; x = root;
while (x # leaf node){
if (x.key = ep) return; // key ep already exists

y=x
if (ep <x.key) x = x.Ieft;

else x = x.right,

07 }

X.parent =y,

x.key = ep; x.color = red;

attach leaf nodes to x.left and x.right;
11 if (y = null) root = x;
Insertion_Fixup(root, x);

Fig. 4. The DST end point insertion algorithm.

4.2.1 Inserting a New Key in DST

In Step 1 or 2, if the new key exists in DST, no new node is
created. Otherwise, a new node associated with the new key
will be created and inserted in DST as a leaf node.

We use a slightly modified version of the standard red-
black tree insertion algorithm [4] to insert a new key into DST.
Fig. 4 shows the insertion algorithm DST_Insert_Endpoint.
Just like in DST search, the insertion algorithm traverses the
tree from the root to a leaf node « according to the new key ep.
If we find that the new key exists in DST when traversing the
tree, the search stops. After a leaf node x is reached, it is
assigned the new key and the color red. Node z becomes the
regular node in DST. Finally, node z is attached with two leaf
nodes as its left and right children.

Inserting a new key may cause a violation of one of the
red-black properties [4] (that is, x.parent.color = red). Hence,
line 12 in Fig. 4 invokes the algorithm Insertion_Fixup(root, )
that restores the red-black properties. Insertion_Fixup is
similar to the algorithm RB-Insert in Section 14.3 of [4] and is
thus omitted in this paper. Since the proposed DST is
augmented with the canonical sets, the left and right
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rotations may change the intervals covered by the nodes
involved in rotations. Hence, we have to adjust the
canonical sets of said nodes. We will show how to do this
adjustment in Section 4.3.

4.2.2 Inserting a Range infto DST

After the two end points of range R are inserted in DST, R
can then be inserted in the canonical sets of some proper
nodes in DST according to the DST range allocation rule.
Inserting a range R = [e, f] takes the following steps:

1. Find the lowest common ancestor (LCA), node y, of
two nodes with keys e — 1 and f.

2. If R contains intvl(y), add R in y.Cset.

3. Ifeis zero, insert R in y.le ft.Cset. Otherwise, insert R
in wu;.right.Cset for i =1 to m if wui.right # w1,
where u; to u,, are the descendants of node y in the
path from y to u,, that is, the node with key e — 1,
and insert R in wu,,.right.Cset.

4. If fis 2" — 1, insert R in y.right.Cset. Otherwise,
insert R in v;.left.Cset for i =1 to n if v;.left # viyq,
where v, to v, are the descendants of node y in the
path from y to v,, that, is the node with key f, and
insert R in v,.left.Cset.

Fig. 5 shows the algorithm DST_Insert_Range(root, R)
that inserts range R in DST. Since the two end points e — 1
and f of range R = [e, f] have been inserted in DST, we can
locate the LCA (node y) of the two nodes with keys e — 1 and
f in the tree. Notice that y could be the node with key e — 1 or
f. While traversing the tree for finding the LCA node y, the
lower and upper bounds b and ub of the interval intvi(y)
can also be obtained. In Step 2, if range R contains the
interval [lb, ub], it must be stored in y. Steps 3 and 4 try to
store range R in the subtrees that are rooted at node y’s left
and right children, respectively. Since keys —1 and 2"V — 1
are not stored in DST, it is possible that range R completely
contains the interval intvl(y.left) or intvl(y.right). Thus, the

B=0,ub=2"-1;

Algorithm DST_Insert Range(root, R) // assume R=[e, f]
{

S SR
Find LCA node y and the lower and upper bounds /b and ub of the subtree rooted at y;
////////// step 2 /I T T T
if ([/b, ub] is contained in R ) { Add R in y.Cset; return;}
/T step 3 /////////////////////////////////////////////////////////////////////////////////////////////////////
Iby = Ib; uby = y.key:
if e =0) AddR in y.left.Cset; /l'i.e., [Iby, uby] is contained in R
if (e— 1 <ykey) {
x = y.left;
while (x # leaf node){
if (x.key = e — 1) { Add R in x.right.Cset; break; }
if (e — I <x.key) {
Add R in x.right.Cset;
x = x.left
}else x = x.right;

}

/}///////// step 4 /11T T T T T T
x=y. rz%flt by =y. key, uby = ub;

if (f=2" —1) Add R in x.Cset; // i.e., [Iby, uby] is contained in R

if clause is the same as lines 5-14 with ‘e — 1’ and ‘f ‘exchanged, >’ and ‘<’
exchanged, and ‘/eft’ and ‘right’ exchanged

Fig. 5. The DST range insertion algorithm according to the range allocation rule.
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01 x=root;

03 if (LCA node y for R is not found){

12 if (e=0) Add R in y.left.Cset,;
13 elseif (e—1 <ykey) {

}
27 if (f=2" - 1) Add R in y.right.Cset;

Algorithm Optimized DST _Insert(root, R) // Assume R=/e, f]
{

02 if (x = dummy node) { Insert the first two nodes with keys e — I and f; return ;}

04 Find the leaf node x such that x.key <e — 1 or f < x.key

05 Insert two nodes with keys e — / and fin the tree;

06 perform necessary rotations;

07 return;

08 } else {

09 Find the lower and upper bounds /b and ub of subtree rooted at y;
10 if ([/b, ub] c R) {Add R in y.Cset; return; }

11

14 x=y.left

15 while (x # dummy node){

16 if (x.key = e — I) {Add R in x.right.Cset; break;}
17 if (e — I <x.key) { Add R in x.right.Cset; x = left(x); }
18 else x = x.right,;

19 }

20

21 if (x = dummy node)

22 xkey=e— I; x.color = red;

23 attach dummy nodes to x./eft and x.right;

24 Add R in x.right.Cset;

25 Insertion_Fixup(7, x);

26

28 else if clause is the same as lines 13-27 with ‘e — 1” and ‘/’ exchanged, “>* and ‘<’
exchanged, and ‘left’ and ‘right’ exchanged

Fig. 6. The optimized DST insertion algorithm.

first thing to do in Step 3 is to add R in y.left.Cset if R
contains intvl(y.left). This is only possible when e is zero.
Otherwise, we add R in the canonical sets of proper nodes
in the left subtree of node y, as shown in Lines 5-14. We
traverse the nodes (u; for ¢ = 1 to m) in the path from y to
the node with key e — 1, where w; is y.left, and uy, is the
node with key e — 1. We insert R in u;.right.Cset for i = 1 to
m if w;.right # ui,. Step 4 is similar to Step 3.

Assume that the tree in Fig. 2 is a red-black tree right
after end point 15 of range P1 = [0, 15] is inserted. P1 will be
inserted as follows: The LCA node of end points —1 and 15
is y. The interval intvl(u) is [0, 7] contained in P1 because
the start point of P1 is zero. Thus, P1 is stored in u.Cset.
Since P1 contains intvl(y.left) but not intvl(v), P1 is also
stored in v.le ft.Cset.

4.2.3 Complexity

Assume that the size of the canonical set is O(CSize) and
inserting a range in a canonical set takes O(f(CSize)) time.
Inserting an end point in DST takes O(logN) time plus
O(CSize x f(CSize)) time for a constant number of red-
black tree rotations, as will be described later. As shown in
lines 7-13 in Fig. 5, each iteration of the while loop inserts a
range into a canonical set. Thus, the worst-case time
complexity is O(log N x f(CSize)). Furthermore, inserting
a range and the two associated end points takes O((log N +
CSize) x f(CSize)) time.

4.3 Optimized Insertion in DST

The insertion algorithm proposed above takes three
separate steps sequentially to complete the insertion
process. This is its major disadvantage in terms of update

speed. In this section, we develop an optimized insertion
algorithm that combines these three separate steps into one.
In other words, the steps for inserting the two end points of
a range R are performed while inserting R. The worst-case
execution time of the optimized insertion algorithm is thus
only two-thirds that in the unoptimized insertion algorithm.
Fig. 6 shows the pseudocode of the optimized insertion
algorithm. Since keys e — 1 and f may not exist in the tree,
we give a different definition for the LCA node of R as
follows: Let G be the set of existing keys contained in range
R=[e—1,f]. If G is not empty, the LCA node of R is
defined to be the LCA of all nodes that contain any key in G.
If G is empty, e — 1 and f must be between two successive
keys, assuming that —1 and 2" — 1 are the smallest and
largest keys in the tree, respectively. One of these two
successive keys must be in a leaf node. Thus, as shown in
lines 1-6 (Step 1) in Fig. 6, two newly created nodes with
keys e —1 and f are inserted under this leaf node and
rotations to balance the tree may be needed. For example, if
range R = [1,2] is to be inserted into the segment tree in
Fig. 2, two new nodes with keys e — 1 and f are inserted
under node w.

If the LCA node y for range R = [e, f] is found, it is
possible that R contains the interval of node y. Thus, Step 2 is
needed. Step 3 in lines 9-23 inserts end point e — 1 and
range R in some nodes of the left subtree of node y. In line 10,
if e is zero, we immediately add R in y.le ft.C'set. Otherwise,
similar operations to that of algorithm DST_Insert_Range in
Fig. 5 are performed. The only difference is that we need to
make sure whether key e — 1 exists in the tree or not. Step 4,
which involves the insertion of end point f and range R, is
similar to Step 3. The complexity of the optimized insertion
algorithm is the same as the unoptimized one.



CHANG AND LIN: DYNAMIC SEGMENT TREES FOR RANGES AND PREFIXES

right rotation
-_—

left rotation
subtree ¢

subtree a

subtree a subtree b subtree b subtree ¢

(a) (b)

Fig. 7. The DST right and left rotations.

4.4 DST Rotations

Rotations are used to rebalance the search tree after
inserting or deleting a key. For DST, changing colors and
pointers is the same as that in the original red-black tree and
is thus straightforward. However, changing the pointer
structure also alters the relative positions of the canonical
sets involved in rotations. As a result, the DST range
allocation rule may be violated. Therefore, we must adjust
the canonical sets involved in rotations to maintain the
range allocation rule.

Changing the pointer structure through rotations is a local
operation in the tree. Fig. 7 shows the left and right rotations
for DST (the same as the red-black tree). The interval covered
by any node in subtrees a, b, or ¢ does not change after a left
or right rotation. For example, the interval covered by
subtree b remains [z.key + 1, y.key] after a rotation. However,
the intervals covered by nodes = and y are changed. Before
the left rotation around node z is carried out as shown in
Fig. 7b, intvi(z) is the union of all intervals covered by
subtrees a, b, and ¢ and intvl(y) is the union of all intervals
covered by subtrees b and c. After the left rotation, intvl(z)
becomes the union of all intervals covered by subtrees b and ¢
and intvl(y) becomes the union of all intervals covered by
subtrees a, b, and c. Therefore, we need to reallocate the
ranges in the canonical sets of nodes z and y.

We only show the range relocation for left rotations
because the range relocation for right rotations is similar. To
avoid confusion, we use Cset and Cset to denote the
canonical sets before and after left rotations, respectively.
We assume that subtrees a, b, and c are not empty. Similar
operations can be taken if either subtree q, b, or c is empty.
We perform three steps to reallocate the ranges in the
canonical sets of nodes z and y as follows:

1. All ranges stored in z.Cset must be moved to y.Cset
because node y covers the union of subtrees a, b, and ¢
after rotation. Therefore, we perform y.é’set = x.Cset.

2. There might be a range R that simultaneously covers
the intervals of subtree a and subtree b. Therefore,
after the left rotation, R must be removed from
x.left.Cset and y.left.Cset and must be inserted in
x.Cset. Therefore, we perform the following:

Csetl = z.left.Cset Ny.left.Cset,
z.Cset = Csetl,
x.left.é’set = z.left.Cset — Csetl,

and z.right.Cset = y.left.Cset — C'setl.
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pre(x): predecessor(x) root

suc(x): successor(x)

Zf

pre(ze_;) Suc(ze.;) pre(z) pre(z)

Fig. 8. lllustration for deleting a range R = [e, f].

3. Similarly to Step 2 above, all ranges stored in y.Cset
need to be removed and inserted into the canonical
sets of the root nodes of subtrees b and c. Therefore,
we perform z.right.Cset = z.right.Cset Uy.Cset and
y.right.Cset = y.right.Cset U y.Cset.

Complexity. Assume that the size of the canonical set is
O(CSize) and inserting/deleting a range into/from a
canonical set takes O(f(CSize)) time. Since there may be
O(CSize) ranges that are inserted into or deleted from a
canonical set, the time complexity of a rotation is
O(CSize x f(CSize)).

4.5 Deletion in DST
Deleting a range R = [e, f] from DST needs the following
steps:

1. Remove R from all canonical sets that contain R
based on the range allocation rule.

2. If eis not zero, determine if the node z with key e — 1
needs to be deleted from DST. If so, the following
operations must also be performed:

a. Adjust the canonical sets of some nodes in the
subtree rooted at node z.
b. Rebalance the tree.

3. If fisnot 2" — 1, this step is the same as Step 2 with

keys e — 1 and f exchanged.

The process of deleting a range R = [e, f] is illustrated in
Fig. 8. We first find the LCA node y of the two nodes z._;
and z¢ with keys e — 1 and f. Step 1 deletes the range R by
traversing the two paths from y to z._; and from y to z,
according to the DST range allocation rule. This step is the
same as Step 3 for the insertion of a range as shown in Fig. 5.
The time complexity of this step is O(log N x f(CSize)),
assuming that the size of the canonical sets is O(C'Size) and
the time to delete a range from a canonical set is
O(f(CSize)). Steps 2 and 3 determine if nodes z._; and z
really need to be removed from DST based on the DST node
deletion rule, which will be described later.

To delete an end point, we must make sure that this end
point is not also the start or finish point of another range.
For example, in Fig. 2, when we delete P6 = [48,63], node z
with key 47 cannot be deleted because end point 48 is also
the start point of P7. In general, the DST node deletion rule is
based on Definition 2, which states that the range matching
sets EI; and EI;; of two consecutive elementary intervals
X; and X, are different. Assume that intervals X; and X,
are delimited by the key in node z. After a range is removed
from DST, if EI; and EI;,; become the same, node z should
be removed from DST based on the node deletion rule.
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Fig. 9. Replace node =z to be deleted by z’s successor, v,. Node vy = successor(zmq; ), Where z,,, is the node with the largest key in the subtree

rooted at z.

To determine if EI, = El;;;, we have to compute the
canonical sets whose ranges contain intervals X; and Xj;;.
Since the ranges in the canonical sets of node z’s ancestors
contain both X; and Xi;; and thus belong to both EI;, and
El 1, they can be ignored when determining if EI; = EI, ;.
As a result, EI; and EI;;; can be computed as follows (also
see Fig. 9):

El; = z.left.Cset Uuy.right.Cset U . ..U uy.right.Cset, (1)

El; 1 = z.right.Cset Uvy left.Cset U...Uwvy.left.Cset, (2)

where u; for j=1 to m and v, for k=1 to n are the
descendant nodes of z in the paths from z to w,, =
predecessor(z) and from z to v, = successor(z), respectively.

Definition 5 (DST node deletion rule). Node z must be
deleted if and only if EI; = El,y,, where EI; and EI,, are
computed based on (1) and (2).

For example, in Fig. 2, interval X is contained in
intervals intvl(w), intvl(z), and intvi(q). Thus, the range
matching set Els of X is {P2}, which is the union of w.Cset,
z.Cset, q.Cset, and gq.left.Cset. Similarly, El5 is {P2, P5},
which is the union of w.Cset, y.Cset, v.Cset, and
v.right.Cset. If P5 is deleted, node w also has to be deleted.

Now, we describe how to remove a node z from DST. As
in the deletion algorithm for the binary search tree
described in [4], three cases are considered when deleting
node z from DST: 1) z is a leaf node in DST, 2) z is a node of
degree one, and 3) z is a node of degree two.

Case 1: Delete node z that is a leaf node. Deleting a leaf
node z needs the following steps:

1.1. Reset node z as a leaf node.

1.2. Remove the two leaf nodes of node z.

1.3. Perform a red-black tree fix-up operation [4] from

node parent(z) up to the root.

Notice thatnode zis aregularnode and notaleafnode. The
first thing that should be done is to reset node z as a leaf node.
Without loss of generality, we assume that zis the right child
of its parent, that is, z = z.parent.right. Node r with key 39 in
Fig. 2 is an example. According to the DST node deletion rule,
node z must be deleted if z.left.Cset = z.right.Cset after a

range R is removed from the tree. Range R must be stored
either in z.left.Cset or z.right.Cset, but not in both before R
is removed. Also, according to the DST range allocation rule,
it is impossible if there exists another range R1 that is stored
in zleft.Cset or zright.Cset. As a result, we have
zleft.Cset = ¢ and zright.Cset = {R} or zleft.Cset =
{R} and =z.right.Cset = ¢ before range R is deleted.
However, it is possible that some ranges may be stored in
z.Cset (that is, z.Cset # ¢). The ranges stored in z.Cset
contain the interval intvi(z). Thus, after deleting node z, the
ranges stored in z.Cset are not moved by resetting node z as
a leaf node (Step 1.1). Then, the two leaf children of node =
are deleted (Step 1.2).

The last thing that should be done is to rebalance the tree
(Step 1.3). Regardless of the use of either the AVL or the
red-black tree, standard balancing operations can be used.
As stated earlier, only the canonical sets of some nodes may
need to be adjusted.

Case 2: Delete a node z of degree 1. We further break
down this case into four subcases. Let z, and z. be the
parent and child of node z, respectively. The first subcase
deals with the condition when z is the right child of z, and
2. is #’s right child, that is, z = z.parent.right and z.left is
the leaf. The other three subcases, z = z.parent.left and
z.right is leaf, z = z.parent.right and z.right is the leaf, and
z = z.parent.left and z.left is the leaf, can be considered
similarly.

We first prove that node z must be black. Assume that
node zis red based on the property of the red-black tree that
dictates that a red node cannot have a red child. Therefore,
node z.right must be black and the number of regular black
nodes from node z to z’s left leaf child is zero. However, the
number of regular black nodes from node z to z.right is at
least one. This violates the red-black tree property that
every simple path from a node to a descendant leaf contains
the same number of black nodes. For the same reason, we
can prove that z.right is red and z.right is a regular leaf
node. We first summarize the process of deleting node z as
follows and give the details afterward:

2.1. z..Cset = z.Cset.

2.2. z.parent.right = z.right.

2.3. Change the color of node z.right to black.
2.4. Delete node z and leaf node z.left from DST.
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TABLE 4
Four Cases for Deleting a Node with One Child

Before deleting any range | After deleting range R1 or R2
Case|z.left.Cset |z..Cset| z..left.Cset | z.left.Cset | z..Cset |z..left.Cset
1 | {R2} {RL,R2} | {R2} {R2}

2 {R2}
3 {R2}
4 [) {R1}

Based on the DST Cset properties that were described
earlier in this section, the following conditions must be true:
zleft.Cset N z,.Cset = ¢ and z..Cset N z..left.Cset = ¢. Ac-
cording to the DST node deletion rule, the third condition,
zleft.Cset # z..Cset U z..left.Cset before any range is
deleted or z.left.Cset = z..Cset U z..left.Cset after a range
is deleted, must also be true. Based on these three
conditions, four cases in Table 4 are identified as follows:
Assume that the union of z.left.Cset and z..Cset consists of
two or more ranges before any range is deleted, like
zleft.Cset U z..Cset = {Ra,Rb}, for instance. This assump-
tion results in the key of node z being the common end
point of two or more ranges. Thus, no matter which range
(Ra or Rb) is deleted, it is impossible that

zleft.Cset = z..Cset U z..le ft.Cset.

Therefore, if we want to have a node deleted after a range
is removed from DST, we must have z.left.Cset = {R2},
z..Cset = ¢, zleft.Cset=¢, and 2z.Cset={R2} or
zleft.Cset =¢ and z..Cset=¢. The canonical set
z..left.Cset can be determined accordingly. As a result, if
any one of the four cases in Table 4 happens, node z must be
deleted when range R1 or R2 is removed from DST.
Consider Case 1 in Table 4 in which z.left.Cset = {R2},
z.Cset = ¢, and z.left.Cset = {R1,R2}. Deleting range R1
results in zleft.Cset = z..Cset U z..left.Cset and, thus,
node z can be removed from DST. If node z is deleted, the
interval associated with node z. is expanded from [z.key +
1, zc.key| to [zp.key + 1, z..key]. Thus, the remaining range R2
in both z.left.Cset and z.left.Cset is kept in z.left.Cset
and node z. No matter which case we are considering,
x.Cset is always empty after the deletion of range R1 or R2.
Thus, Step 2.1 performing z..Cset = z.Cset reinforces the
range allocation rule because the start end point of the
ranges in z.Cset remains z,.key+ 1. Since changing the
color of the node to black maintains all of the properties of
the red-black tree, no other operation is needed. Finally,
node z and the leaf node z.left can be deleted immediately.
Case 3: Delete node z of degree 2. To delete a node z of
degree two, we first replace z.key with y.key and then delete
y, where y is either 2’s successor or z’s predecessor in the
tree. If y = successor(z), y must have no left child. Similarly,
if y = predecessor(z), y must have no right child. Node y
must be of degree one or zero. We shall describe how to
select 2’s successor or z’s predecessor in order to reduce the
total overhead of deleting node y later. Currently, we
assume that successor(z) is selected to replace z. To facilitate
the analysis, we further break down this case into two
subcases: y has one child and y is a leaf node. We only give
the detailed analysis for the former because the analysis for
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both is similar. Fig. 9 illustrates the general case for which
node y (v,) has a right child z =w,y; and range R is
deleted. We first summarize the deletion process as follows
and give the details afterward:

3.1. z.key = y.key.

3.2. vy_q.left = wyyy (zright = wy if n =1).

3.3. wyy1.Cset = wy41.Cset Uv,.Cset.

3.4. For each range R = e, f] in wy+1.Cset, m =k if
vpkey < f <wvp_1.key for 0<k<n-—2 or m=0 if
vo.key < f, we perform the following operations:

a. Delete R from w;.Cset, fori=n-+1 to m + 2.
b. Add R in v,;,.Cset.
3.5. Remove node y and y’s left leaf child.
3.6. Perform the red-black tree fix-up operation [4] from

node wy,4; up to the root.

One special case is when n = 1, that is, y = z.right. In this
case, only Step 3.2 needs to be changed. The change is
shown in the parentheses in Step 3.2. Therefore, we assume
that n > 1 and, thus, y # z.right hereafter.

The first two steps are straightforward. According to the
DST node deletion rule in Definition 5, if node y must be
deleted from DST, any range in wv,.left.Cset or v;.Cset for
i = 1 to n must also be stored in u,,.right.Cset or w;.Cset for
i=1 to m after a range is deleted. For example, R1 in
y.left.Cset is also in wu,,.right.Cset. Therefore, the canonical
set y.left.Cset can be deleted directly. Also, the ranges in
v,.Cset (for example, R2 in Fig. 9) must be moved to
wnt1.Cset, as shown in Step 3.3.

There may exist a range that belongs to both w;,1.Cset
and w,.Cset. R3 = [v,.key +1,v,_9.key] in Fig. 9 is an
example. Thus, R3 should be deleted from both w;,1.Cset
and w,.Cset and inserted into v,_;.Cset after node y is
deleted. The general case is shown in Step 3.4. Finally,
node y and y’s left leaf node are deleted and a red-black tree
fix-up operation is needed.

Consider the DST shown in Fig. 2. Assume range P5 is
deleted. Node w with key 23 must be deleted because the
range matching set of elementary interval X5 is the same as
that of X¢, which is {P2}. To delete node w, Steps 3.1 and 3.2
perform the operations of w.key = g.key and z.left =r.
Since ¢.C'set is empty, Step 3.3 does nothing. In step S.4, we
have to remove range P4 from r.Cset and g.Cset and put it
in z.Cset because P4 = [32,63]. Finally, the deletion of
nodes ¢ and g¢.left and the red-black tree fix-up operation
that will change the color of node r to black will complete
the process of deleting node w.

Complexity. We use the same assumptions in DST
insertion. The overall complexity of the deletion process is
equal to that of deleting a node of degree two in Case 3
because, in Step 3.4, the ranges may be removed from the
canonical sets of some nodes and be added in other nodes.
Thus, the overall complexity of DST deletion is O(log N x
Maz x f(Maz)) because there are O(Max) ranges in
wy11.Cset and each range in w,;.Cset may be inserted/
deleted into/from w;.Cset for i=n—1 to 1, where n is
O(log N) and inserting/deleting a range into/from a
canonical set takes O(f(Mazx)) time.
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4.5.1 Cost of Selecting Node y to Replace Node z
Based on the proposed DST, changing the colors and
pointers of the nodes is a simple operation since it does not
involve any complicated data structure. Two complicated
operations include the rotations and the canonical set
adjustment in Step 3.3. These two operations involve
searching, inserting, and deleting ranges in and from the
canonical sets. The data structures that can be used for
canonical sets will be discussed later.

In Section 4.3, we discussed the three steps needed for
left rotations. In the second step of left rotations, we have to
delete the common ranges from z.left.Cset and y.left.Cset
and insert them in m.éset, which is the canonical set of
node x after a rotation. This will translate into the following
canonical set operations: The first operation is to compute
Linterseet = x.left.Cset N y.left.Cset, which is the intersection
of the two canonical sets x.left.Cset and y.left.Cset. The
next two operations are x.left.Cset = x.left.Cset — Liniersect
and y.left.Cset = y.left.Cset — Lipersect- The last operation
computes y. Cset = x.Cset + Iiperseat- In the third step of left
rotations, we move all of the ranges in y.Cset to both
z.right.Cset and y.right.C'set. This will translate into the
following canonical set operations:

1'.7‘ight.6’56t = x.right.Cset + y.Cset

and

y.right.é’set = y.right.Cset — y.Cset.

To simplify the process of analyzing the cost of replacing =
with y, we assume that one rotation needs six canonical set
operations (four for Step 2 and two for Step 3). Based on the
red-black tree, a deletion requires at most three rotations if
the deleted node is black. Therefore, we assume that
18 canonical set operations are needed for a red-black tree
deletion.

For the canonical set adjustment in Step 3.3 as described
above, the cost is calculated as follows: Assume that range
R; = [ej, fj] in wy11.Cset and vij.key < f; < vpj_1.key for 0 <
kj <n—2 or v.key < f; if j = 0. Therefore, we need n —
kj — 1 canonical set deletions from w;.Cset for i = n to k; + 2
and one canonical set addition in vy;4;.Cset. Therefore, n —
k; canonical set operations are needed for R;. Assume that
there are [ such ranges (R; to R;) in wy,41.Cset. In total, we
need | x n — ¥'k; canonical set operations. The operation of
determining a range R; € w,,41.Cset such that v;;.key < f; <
vpj—1-key for 0 < k;j <m —2 or wvy.key < f; if j=0 can be
computed in a very efficient way as follows: Please refer to
Fig. 9. When we perform the node deletion rule by
traversing the tree from the root to predecessor(z) and
successor(z), we can record the keys and pointers of nodes
vy to v, in two separate lists, namely, klist and plist. Then, a
simple binary search on the list klist with value f; can
determine whether a range R; = [e;, f;] in ws1.Cset satisfies
vj-key < fj < vpjorkey for 0 < k; < n — 2 or vy;.key < f; for
k; = 0. With this efficient method, the execution time for
determining whether or not the range R;=[e;, f;] in
w1 1.Cset needs to be moved or can be ignored.
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Finally, we have to consider the rotations needed when
z.key is replaced by the key of predecessor(z) or
successor(z), as in Steps 1.3 and 3.6, required in the red-
black tree deletion fix-up operations. Assume that node y
is replaced by successor(z). If successor(z) has a child
Wyt1, Successor(z) must be black, and w,; must be red
before deleting node z, as based on the definition of red-
black trees. When node successor(z) is removed from DST,
node w,; can be set to black. As a result, all red-black tree
properties are maintained and, thus, no further rotation is
needed. Now, consider that successor(z) has no child. If
successor(z) is red, no rotation is needed when successor(2)
is deleted. However, if successor(z) is black, we have to
follow the red-black tree deletion fix-up operation to
rebalance the tree. This tree deletion fix-up operation needs
three rotations at most, which account for 18 canonical set
operations.

Now, we summarize the above analysis and come up
with the replacing node selection rule as follows: If the number
of canonical set operations needed for replacing node z with
successor(z) is less than or equal to that needed for replacing z
with predecessor(z), we select successor(z) to replace z.
Otherwise, we select predecessor(z) to replace z.

4.6 Data Structure for Canonical Sets

As stated earlier, the most complicated operations in DST
are the ones that act on canonical sets. In this section, we
develop efficient data structures for organizing ranges in
canonical sets based on different types of ranges: arbitrary
and prefix ranges. Before describing the details, we give the
following assumptions first: Each range is assigned a
priority. In general, a range R1 is assigned a higher priority
than R2 if R1 is more specific than R2. Otherwise, the
priorities of ranges R1 and R2 can be assigned randomly.

As shown in Fig. 3, the proposed search algorithm finds
matches for address d by performing a simple DST traversal
from the root to the leaf node that corresponds to the
elementary interval that contains d. All ranges in the
canonical sets of the traversed nodes match d. If the
application using the search requires all of the matched
ranges, then the process is completed. Now, we assume that
the application needs the highest priority range. If the range
set consists of arbitrary ranges, the proposed search
algorithm needs to search all of the canonical sets traversed.
If the range set is conflict-free, only the last visited
nonempty canonical set needs to be searched. In BOB [14],
regardless of the range sets being arbitrary, conflict-free, or
prefix ranges, not all ranges encountered in the searching
path match d. Therefore, extra operations are needed to
determine the matching ranges of d. This is why the
proposed search algorithm is faster than BOB, as we shall
see in the performance evaluation.

4.6.1 A Combination of the Priority Queue and the Thin
Interval Tree for Arbitrary Ranges

No matter whether the range set is arbitrary or conflict-free,
it is important to have an efficient data structure to find the
highest priority range in a range set, as well as to insert/
delete a range into/from a range set. The priority queue
provides a partial solution because it is only good for search
and insertion. To achieve a fast deletion performance, we
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Priority Queue
root

Fig. 10. Canonical set data structure for arbitrary ranges.

propose a data structure that combines the priority queue
and the thin interval tree [4]. Fig. 10 shows an example for a
canonical set consisting of six additional ranges that are
added in the segment tree in Fig. 2. These six ranges are
stored in the canonical set of node ¢ that is associated with
interval [24, 47]. Obviously, finding the highest priority
range from the root of the priority queue takes a constant
time. The thin interval tree facilitates the fast implementa-
tion of a range’s deletion from the canonical set. Each node
in the thin interval tree is augmented with a priority pointer
pointing to the corresponding node in the priority queue.
The process of deleting a range works as follows: Let R be
the range to be deleted. We first delete R from the thin
interval tree. Then, by following the priority pointer in R,
the corresponding node in the priority queue can be deleted
accordingly. Inserting a new range takes similar actions. As
a result, inserting/deleting a range into/from the thin
interval tree and the priority tree takes O(log C'Size) time,
where CSize is the size of the canonical set.

4.6.2 A Combination of the Bit Vector and the Linear List
for Prefix Ranges

If prefixes are considered, our experiments show that the
best data structure for the range set having the fastest
search performance is the combination of a bit vector and a
linear list. The bit vector stores the lengths of the prefixes in
the canonical set and the linear list stores their next hop
ports. Since the maximum number of prefixes in a real
routing table that cover any address is six, it is practical to
store prefixes in a canonical set in a linear list. Searching the
longest prefix in the bit vector of a canonical set takes a
constant time, but inserting/deleting a prefix into/from the
linear list of a canonical set takes O(W) time.

5 EXPERIMENTAL RESULTS

In this section, we present the experimental results of the
proposed DST and other prominent dynamic schemes in
terms of memory requirement, search, insertion, and

TABLE 5
Analyses of Five BGP Routing Tables
Obtained from [2] and [17]

pziority pointer
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Thin Interval Tree

root Range set

ID: Range, priority
A: [16,47], 6 (lowest)
B: [22,47], 2
C: [22,54], 5
D: [24,47], 1 (highest)
E: [24,51], 3

_____ F: [24,54], 4

deletion times. We implemented all tested schemes in C
and measured their performance based on five IPv4 routing
tables obtained from [2] and [17]. Table 5 shows the detailed
statistics of these five routing tables. The first three routing
tables having the same AS number are obtained from the
same Border Gateway Protocol (BGP) backbone router [17]
at different times and the other two tables are from [2]. The
experiments were run on a 2.4 GHz Pentium IV PC with
8 Kbyte L1, 256 Kbyte L2 caches, and 512 Mbyte main
memory. The gcc-3.2.2 compiler of Redhat 9.0 with an
optimization level of -O4 was used. The instruction called
ReaD Time Stamp Counter (RDTSC) is also used to keep an
accurate count of every clock cycle that occurs in the
processor.

As we can see in Table 5, the number of distinct end
points |E|,; using the traditional end point scheme is almost
twice the number of prefixes. The number of distinct end
points |E|,_, ; using the minus-1-end point scheme is only
about 1.36 times the number of prefixes in average. In our
experiments, both DST and PBOB are implemented with
red-black trees and PIBT and MRT are 32-way B-tree data
structures. Table 6 and Fig. 1la show the memory
requirements for all tested schemes. As expected, PBOB
consumes the least memory because each prefix is stored
only once in the tree, whereas DST, MRT, and PIBT may
store each prefix in many nodes. MRT and PIBT consume
more memory than PBOB and DST because their node sizes
are larger than that in PBOB and DST and the keys and
child pointers of the 32-way B-trees used in MRT and PIBT
may be underutilized.

To measure the search times, we randomized the start
addresses of all prefixes in the original routing table as the
input IP traffic in the simulation. The average search times
from the input IP traffic are illustrated in Table 7 and Fig. 11b.
As we can see, PBOB performs much worse than the other
three schemes. DST is only a little slower than MRT and PIBT.
The search time of DST is about 50-60 percent of that of PBOB.
MRT and PIBT have the best search times because the heights
of B-trees in MRT and PIBT are smaller than that of the binary
search trees in PBOB and DST. Since the number of distinct
end points [E|,_, ; using the minus-1-end point scheme is only

TABLE 6
The Memory Requirement (Kbytes)

Table AS6447a | AS6447b | AS6447c | AS7T660 | AS2493
Year-Month | 2000-4 | 2002-4 | 2005-4 | 2005-4 | 2005-4 Scheme | AS6447a |AS6447b] AS6447c | AS7660 AS2493
# of prefixes | 79,560 | 124,824 | 163,574 | 159,816 | 157,118 PDB%TB %ggg ;ggi g?g;‘ ‘31(13‘31 ‘21822
[Ele-1,e 112,975 | 172,279 | 219,038 | 210,395 | 207,008 PIBT 1957 ) T0081 9826 5673
|Ele.s 154,743 | 241,329 | 314,637 | 306,679 | 301,914 MRT 4815 7511 9792 9545 9396
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Fig. 11. Performance comparisons.

about 1.36 times the number of prefixes, the heights of DST
(log(|El,_;¢)) and PBOB (log(number of prefixes)) are
approximately the same. Thus, the reduction of the number
of end points in the tree is only a secondary factor that
improves the DST search speed. The primary factor is as
follows: Both DST and PBOB augment the tree nodes with the
canonical sets and range sets (that is, range() in [14]),
respectively. For simplicity, we refer to the canonical sets
and range sets as the cover sets when no confusion is incurred.
DST and PBOB are similar in that the cover sets of the nodes
along the search path need to be examined to find the longest
prefix match. However, the search speeds of DST and PBOB
are different in how the cover sets are examined. Since PBOB
does not guarantee that all of the prefixes in the cover sets of
the nodes along the search path match the target IP address, it
has to examine every prefix in the cover sets encountered one

TABLE 7

The Performance of Various Dynamic Schemes
Routing Table [AS6447a]AS6447b]AS6447c[AS7660 [ AS2493

DST | 0.75 0.86 093 [ 092 | 091

Search | PBOB | 1.33 1.42 1.72 1.62 | 1.82

(psec) [ PIBT | 0.58 0.66 0.69 [ 0.69 | 0.68

MRT | 0.66 0.72 074 | 0.75 | 0.74

DST | 0.77 0.76 073 | 073 [ 0.72

Insert |- DST | 0.96 0.98 098 [ 096 | 0.96

(usec) | PBOB | 0.84 0.84 086 | 085 | 0.85

PIBT | 1.46 1.51 1.54 150 | 1.50

MRT | 1.23 1.25 1.26 123 | 124

DST | 0.94 0.92 090 [ 091 [ 0.90

Delete | DST_| 048 0.46 045 | 045 | 044

(usec) | PBOB [ 057 0.57 0.64 | 062 | 0.60

PIBT | 1.75 1.81 2.02 1.92 | 194

MRT | 2.05 221 243 | 231 | 230

Delete Time (1 sec)

AS6447a

AS644Tb AS6447c

Routing Table

AST660 AS2493

(©)

by one to determine if the target IP address is matched. For
DST, two properties of the cover sets are guaranteed. First, all
prefixes in the cover sets of the nodes encountered along the
search path must match the target IP address. Second, the
prefixes in the cover set of the node in the lower tree level
must be more specific than that in the cover set of the node in
the higher level. Therefore, for DST, the longest prefix match
is immediately available in the last nonempty cover set in the
search path. The time-consuming operations required for
PBOB to examine the prefixes in the cover sets are not needed.
Thus, DST has a faster speed than PBOB.

To measure the update speeds, we first construct the
data structure for each scheme according to the original
routing table. Next, we randomly delete 5 percent of the
prefixes from the structure we built to obtain the deletion
times. Then, we randomly insert these deleted prefixes back
into the structure to obtain the insertion times. We illustrate
the average insertion and deletion times in Table 7 and
Figs. 11c and 11d.

At first glance, we may think that PBOB will perform
better than DST in terms of insertion speed because 1) the
DST insertion involves three separate steps for inserting
two end points and one range into the segment tree and
2) PBOB only needs to insert the range into the node such
that the range covers the key of the node or creates a new
node in the binary tree. However, based on our experi-
ments, we shall show that DST actually performs a little
better than PBOB. First, as stated in the definition of the
minus-1-end point scheme, numerous end points of the
newly inserted prefixes are shared with the existing prefixes
and thus already exist in DST before they are inserted.
Therefore, DST generates a lesser number of new nodes
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TABLE 8
The Numbers of Newly Created Nodes in PBOB and DST
after Inserting the Randomly Selected 5 Percent
of the Original Prefixes

Scheme AS6447a | AS6447b | AS6447c AS7660 AS2493
# of prefixes 3978 6241 8178 7990 7855
PBOB 3617 5554 7251 7026 6927
DST 3504 4950 6070 5653 5462

(end points) than PBOB, as shown in Table 8, when
inserting the randomly selected 5 percent of the original
prefixes. Second, the optimized DST insertion algorithm
described in Section 4.3 can insert a prefix and the one or
two nonexisting end points associated with the prefix
simultaneously. Third, PBOB employs a size constraint in
the interval tree. Only the nodes of degree 0 or 1 that have
an empty range set can be deleted. To find the degree 0 and
degree 1 nodes that have an empty range set efficiently, one
doubly linked list of these nodes must be maintained. The
other doubly linked list of degree 2 nodes that have an
empty range set is also needed. PBOB must maintain these
two linked lists because it is not guaranteed that a node that
can be deleted at one time can be deleted after some nodes
are inserted or deleted at another time. For example, when a
range is inserted/deleted in/from the binary search tree in
PBOB or, when a rotation is performed, nodes may be
added in or removed from these doubly linked lists and
nodes may move from one list to another. The operations
involved in these two doubly linked lists slow down the
insertion speed of PBOB. DST does not need to maintain
any linked list. Therefore, with these three factors, the
insertion speed of DST is better than PBOB. However, the
DST deletion is much slower than PBOB because DST has to
delete the nodes (called unneeded nodes) containing the
end points that do not belong to any prefixes stored in DST.
These unneeded nodes can be of any degree. In contrast,
PBOB only deletes the nodes of degree 0 and 1 with empty
range sets.

To improve the deletion speed of DST, we also
conducted experiments by using the idea of the size
constraint in PBOB [14]. In other words, the DST deletion
process only removes the prefixes stored in the canonical
sets and does not delete any unneeded nodes when the
number of nodes in DST is not greater than 2N, where N is
the number of prefixes stored in DST. We denote this
improved DST scheme by DST*, as shown in Table 7 and
Fig. 11. DST" only needs to maintain one doubly linked list
of pointers of these unneeded nodes. When the size
constraint is violated, we need to delete as many nodes
pointed to by the pointers in the doubly linked list to restore
the size constraint. As we can see, the deletion speed of
DST* is considerably improved. However, the DST inser-
tion is a little slowed down. The reason is as follows: If the
newly inserted end point has already been stored in a DST"
node P and the pointer of P is also in the doubly linked list,
then DST” has to remove the pointer of P from the doubly
linked list to complete the insertion process. Notice that,
differently from PBOB, tree rotations in DST* incur no
operation on the doubly linked list since the canonical set
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adjustments from rotations will not violate the DST node
deletion rule.

6 CONCLUSION

We have developed a new data structure called DST that is
suitable for dynamic range sets. DST is a balanced binary
search tree that is built from the distinct end points of
ranges based on a novel minus-1-end point scheme. We also
proposed a data structure that combines the priority queue
and the thin interval tree [4] to efficiently access the ranges
stored in the canonical set of a DST node. The experiments
employing real IPv4 routing tables showed that the DST
performs much better than PBOB and a little worse than the
B-tree-based dynamic schemes (MRT and PIBT) in terms of
search speed. The memory consumption and update speed
of DST are substantially better than those of MRT and PIBT
and comparable with PBOB.
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